当前位置: 欣欣网 > 码农

大模型即服务(MaaS):技术现状和面临挑战

2024-07-15码农

本文来自「 」,随着以大模型为核心的人工智能技术的深入发展,模型即服务(MaaS,Model as a Service)作为一种新型人工智能服务模式焕发新生。本章将明确MaaS的概念及主要的服务能力范围,剖析大模型时代MaaS快速发展的必然性,阐述MaaS在解决大模型规模化落地方面的重要意义。

1、MaaS起源与概念

MaaS基本形态早已形成。2012年美国数据科学家DJ·帕蒂尔 (DJ Patil)首次提出MaaS概念1,即「将机器学习算法打包成可重复使用的服务,使企业能够快速地构建、部署和监控模型,无须开发和维护底层基础架构」,以此来适应AI模型需求快速增长的情况。

此时MaaS多以AI能力开放平台的形式存在,平台之上承载人脸识 别、光学字符识别(OCR)等特定场景的AI能力。该类AI能力由若干个模型及规则、数据库等组合构成,但覆盖功能和场景有限,应用方式较为单一,主要以工具包(SDK)等方式嵌入至业务系统。传统AI模型落地成本低且泛化性不足,MaaS所带来的增益尚不明显。

大模型背景下MaaS概念是指将AI模型及其相关能力打包成可重复使用的服务,使企业能够快速高效地构建、部署、监控、调用模型,无须开发和维护底层基础能力。与早期MaaS概念相比能力范围有所拓展,一方面机器学习算法扩展至包括深度学习、大模型等在内的所有AI模型;另一方面基于模型服务,用户不仅可直接调用服务进行推理,也可基于服务进行AI应用的构建,扩大模型服务的使用范围。 MaaS主要提供三部分:

一是提供包括模型训练、调优和部署等在内的全栈平台型服务,以支持低门槛的模型开发与定制,用户无需关注AI算力、框架和平台即可生产和部署模型;

二是提供包括大小模型及公私域数据集的丰富资产库服务,以支持模型和数据集的灵活快速调用,用户无须生产和部署模型即可调用模型和数据集服务;

三是提供基于AI模型的应用开发工具服务,以支持快速打造场景化应用,用户无须搭建开发工具即可进行AI应用开发。

MaaS主要具备三个显著特性。技术低门槛,有助于将模型普惠更广泛的用户群体;模型可共享,推动行业资源的有效利用和技术进步;应用易适配,使得模型服务能够快速融入业务场景。

MaaS围绕模型生产、模型调用、模型应用开发等过程,提供包括平台服务、模型服务、数据集服务、AI应用开发服务在内的全栈服务,并对模型等资产进行统一管理,提升规模化生产效率,培育和打造新质生产力,为各行业带来变革。

MaaS通过提供全流程平台工具降低技术门槛。在模型训调方面,降低了学习新型训练或调优算法的成本; 在模型部署及运营管理方面,对于部署上线过程复杂等问题,提供快速部署服务,并匹配全生命周期运营监控工具,降低了模型部署和运维的技术难度。

MaaS通过提供集约化的模型库和数据集,解决重复造轮子的资源浪费问题。在管理方面,当模型从单点试验向规模化落地发展时,模型的量变将引起效率的质变,通过模型共享可减少开发资源的浪费,通过模型等数字资产的统一管理有助于提升风险可控性,资源的高效利用和规范管理将成为企业长远发展的保障; 在落地方面,通过直接调用模型服务和数据集,减少了数据处理、选择模型以及模型调优部署的过程,加快了开发进度,快速响应业务需求。

MaaS通过提供模型应用的高效开发能力,适配企业规模化场景需求。在面临单个模型无法解决复杂业务需求的情况下,提供检索增强生成(RAG)、大小模型协同、插件编排等多种方式以增强模型能力,并以智能体(AI Agent)等方式向用户提供更优质的服务。MaaS让更多用户可以生产个性化的模型应用,为AI模型规模化落地提供有效路径。

二、MaaS发展现状及挑战

MaaS作为一种智能化服务新模式得到迅速发展,本章将围绕产业图谱及落地方式阐述当前MaaS的产业发展现状,并分析MaaS落地面临的挑战。

(一)MaaS产业发展现状

MaaS在人工智能产业链中处于中游位置,基于平台服务、模型及数据集服务、应用开发服务的供给能力,形成了初步的产业图谱,且各类参与方积极发挥自身优势,形成不同落地模式。

1.MaaS产业图谱初步形成

MaaS基于算力基础设施的支持,面向场景提供多种应用,具备从模型生产到模型调取并打造成AI应用的全流程能力。

MaaS产业图谱中,平台服务构成了MaaS生态系统的基座能力。国外如Google的AI Platform、微软的AzureMachine Learning以及亚马逊的Amazon SageMaker等平台,提供了从数据处理到模型训练、验证、部署及监控的流水线服务。

国内如阿里云PAI平台、腾讯云太极平台、百度千帆大模型平台和华为的ModelArts平台等,均支持多种机器学习算法和大模型,并提供低代码开发环境与高效的模型训练及部署能力,能够适应多样化的模型定制需求。

2.MaaS两种落地方式

MaaS具备公有云和私有云两种落地方式,公有云模式下模型资源更加丰富,但私有云模式下模型资源的行业领域属性更专业。

公有云方式下,通过丰富的资源可吸引更多用户而提升产品知名度,有助于进一步商业转化。其模型面向社会大众提供服务,模型的种类和数量更多,通用性更强,但是对于业务需求较高的特定场景,部分模型难以直接应用。

私有云方式下,企业内研发团队专注于研究符合垂直领域场景需求的模型,旨在通过调用模型服务以直接解决业务需求,且模型资产和数据隐私性强,各团队在模型共享的过程中可降低资产泄露的风险。

(二)MaaS发展面临的挑战

随着MaaS的快速发展,平台、模型等服务能力迅速得以完善, 但MaaS在规范性、生态建设等方面仍存在不足,模型服务的易用性仍有待提升。

模型服务质量缺乏规范性。目前产业界已发布多个MaaS产品,并汇聚了大量的模型服务,但服务内容和服务质量难以统一和衡量,无法确保用户获得满意的服务。一方面模型服务本身的可用性要求尚未建立统一规范,另一方面服务规模化落地所必须的稳定性、可靠性和安全性等并未形成标准体系。

模型服务易用性不足。由于模型卡片的建设尚不完善,导致模型信息的不透明现象较为普遍。用户无法获取清晰、准确的模型信息,从而难以选择所需模型。此外,模型的可解释性也相对较弱,使得用户难以理解模型的运作机制和输出结果。因此,加强模型卡片的信息透明度,增强模型的可解释性,提升模型服务易用性,是当前面临的重要挑战。

MaaS基建成本控制能力需加强。MaaS的体系构建离不开坚实的基建支撑,涵盖云计算基础设施如算力资源和数据中心的搭建,以及专业技术人才的培育,这些都需要巨额的资金投入。因此MaaS建设方应考虑有效地管理和利用基建资产,降低运营成本提高运营效率,从而降低和控制建设成本。

合规管理体系亟需进一步完善。MaaS在合规性方面面临数据规范与权责确认的双重考验。就数据合规而言,既要关注用户在使用模型服务时个人数据的隐私安全,也要确保用于模型训练和优化的数据来源合法合规。

相关阅读:

转载申明:转载 本号文章请 注明作者 来源 ,本号发布文章若存在版权等问题,请留言联系处理,谢谢。

推荐阅读

更多 架构相关技术 知识总结请参考「 架构师全店铺技术资料打包 (全) 」相关电子书( 41本 技术资料打包汇总详情 可通过「 阅读原文 」获取)。

全店内容持续更新,现下单「 架构师技术全店资料打包汇总(全) 」一起发送「 和「 pdf及ppt版本 ,后续可享 全店 内容更新「 免费 」赠阅,价格仅收 249 元(原总价 399 元)。

温馨提示:

扫描 二维码 关注公众号,点击 阅读原文 链接 获取 架构师技术全店资料打包汇总(全) 电子书资料详情