当前位置: 欣欣网 > 码农

发现一个宝藏 Python 库,玩社区发现算法的不能错过!

2024-06-25码农

网络是由一些紧密相连的节点组成的,并且根据不同节点之间连接的紧密程度,网络也可视为由不同簇组成。簇内的节点之间有着更为紧密的连接,不同簇之间的连接则相对稀疏。这种簇被称为 网络中的社区结构 (community structure)。

由此衍生出来的 社区发现 (community detection)算法用来发现网络中的社区结构,这类算法包括 Louvain 算法、Girvan-Newman 算法以及 Bron-Kerbosch 算法等。

最近,在 GitHub 上发现了一个可以发现图中社区结构的 Python 库 communities,该库由软件工程师 Jonathan Shobrook 创建。

项目地址:https://github.com/shobrook/communities

首先,该库可以实现以下几种社区发现算法:

  • Louvain 算法

  • Girvan-Newman 算法

  • 层次聚类

  • 谱聚类

  • Bron-Kerbosch 算法

  • 其次,用户还可以使用 communities 库来可视化上述几种算法,下图为空手道俱乐部(Zachary's karate club)网络中 Louvain 算法的可视化结果:

    该库的安装方法也非常简单,可采用 pip 的方式安装 communities,代码如下:

    import numpy as np
    from communities.algorithms import louvain_method
    adj_matrix = np.array([[0, 1, 1, 0, 0, 0],
    [1, 0, 1, 0, 0, 0], 
    [1, 1, 0, 1, 0, 0], 
    [0, 0, 1, 0, 1, 1],
    [0, 0, 0, 1, 0, 1],
    [0, 0, 0, 1, 1, 0]])
    communities, _ = louvain_method(adj_matrix)
    >> communities
    [{0, 1, 2}, {3, 4, 5}]


    对于这个 Python 库,很多网友给予了高度评价,表示会去尝试。


    算法详解

    1、Louvain 算法

    louvain_method(adj_matrix : numpy.ndarray, n : int = None) -> list

    该算法来源于文章【Fast unfolding of communities in large networks】,简称为 Louvian。

    作为一种基于模块度(Modularity)的社区发现算法,Louvain 算法在效率和效果上都表现比较好,并且能够发现层次性的社区结构,其优化的目标是最大化整个图属性结构(社区网络)的模块度。

    Louvain 算法对最大化图模块性的社区进行贪婪搜索。如果一个图具有高密度的群体内边缘和低密度的群体间边缘,则称之为模图。

    示例代码如下:

    from communities.algorithms import louvain_methodad
    j_matrix = [...]
    communities, _ = louvain_method(adj_matrix)

    2、Girvan-Newman 算法

    girvan_newman(adj_matrix : numpy.ndarray, n : int = None) -> list

    该算法来源于文章【Community structure in social and biological networks】。

    Girvan-Newman 算法迭代删除边以创建更多连接的组件。每个组件都被视为一个 community,当模块度不能再增加时,算法停止去除边缘。

    示例代码如下:

    from communities.algorithms import girvan_newman
    adj_matrix = [...]
    communities, _ = girvan_newman(adj_matrix)

    3、层次聚类

    hierarchical_clustering(adj_matrix : numpy.ndarray, metric : str = "cosine", linkage : str = "single", n : int = None) -> list

    层次聚类实现了一种自底向上、分层的聚类算法。每个节点从自己 的社区开始,然后,随着层次结构的建立,最相似的社区被合并。社区会一直被合并,直到在模块度方面没有进一步的进展。

    示例代码如下:

    from communities.algorithms import hierarchical_clustering
    adj_matrix = [...]
    communities = hierarchical_clustering(adj_matrix, metric="euclidean", linkage="complete")

    4、谱聚类

    spectral_clustering(adj_matrix : numpy.ndarray, k : int) -> list

    这种类型的算法假定邻接矩阵的特征值包含有关社区结构的信息。

    示例代码如下:

    from communities.algorithms import spectral_clustering
    adj_matrix = [...]
    communities = spectral_clustering(adj_matrix, k=5)

    5、Bron-Kerbosch 算法

    bron_kerbosch(adj_matrix : numpy.ndarray, pivot : bool = False) -> list

    Bron-Kerbosch 算法实现用于最大团检测(maximal clique detection)。图中的最大团是形成一个完整图的节点子集,如果向该子集中添加其他节点,则它将不再完整。将最大团视为社区是合理的,因为团是图中连接最紧密的节点群。因为一个节点可以是多个社区的成员,所以该算法有时会识别重叠的社区。

    示例代码如下:

    from communities.algorithms import bron_kerbosch
    adj_matrix = [...]
    communities = bron_kerbosch(adj_matrix, pivot=True)

    可视化

    绘图

    draw_communities(adj_matrix : numpy.ndarray, communities : list, dark : bool = False, filename : str = None, seed : int = 1)

    可视化图(graph),将节点分组至它们所属的社区和颜色编码中。返回代表绘图的 matplotlib.axes.Axes。示例代码如下:

    from communities.algorithms import louvain_method
    from communities.visualization import draw_communities
    adj_matrix = [...]
    communities, frames = louvain_method(adj_matrix)
    draw_communities(adj_matrix, communities)

    可视化图如下:

    Louvain 算法的动图展示

    louvain_animation(adj_matrix : numpy.ndarray, frames : list, dark : bool = False, duration : int = 15, filename : str = None, dpi : int = None, seed : int = 2)

    Louvain 算法在图中的应用可以实现动图展示,其中每个节点的颜色代表其所属的社区,并且同一社区中的节点聚类结合在一起。

    示例代码如下:

    from communities.algorithms import louvain_method
    from communities.visualization import louvain_animation
    adj_matrix = [...]
    communities, frames = louvain_method(adj_matrix)
    louvain_animation(adj_matrix, frames)

    动图展示如下:

    来源:任识算法

    参考链接:

    https://www.codenong.com/cs105912940/

    https://www.reddit.com/r/MachineLearning/comments/lozys9/p_i_made_communities_a_library_of_clustering/