👉 歡迎 ,你將獲得: 專屬的計畫實戰 / Java 學習路線 / 一對一提問 / 學習打卡 / 贈書福利
全棧前後端分離部落格計畫 1.0 版本完結啦,2.0 正在更新中 ... , 演示連結 : http://116.62.199.48/ ,全程手摸手,後端 + 前端全棧開發,從 0 到 1 講解每個功能點開發步驟,1v1 答疑,直到計畫上線。 目前已更新了219小節,累計37w+字,講解圖:1492張,還在持續爆肝中.. 後續還會上新更多計畫,目標是將Java領域典型的計畫都整一波,如秒殺系統, 線上商城, IM即時通訊,Spring Cloud Alibaba 等等,
1. 業務場景概述
目標是實作一個公司的申請審批流程,整個業務流程涉及到兩種角色,分別為 商務 角色與 管理員 角色。整個流程如下圖所示:
流程圖核心流程總結為一句話: 商務角色申請添加公司後由管理員進行審批 。
商務在添加公司時,可能為了方便,直接填寫公司簡稱,而公司全稱可能之前已經被添加過了, 為了防止添加重復的公司 ,所以管理員在針對公司資訊審批之前,需要檢視以往添加的公司資訊裏有無同一個公司。
2. 實作思路
以上是一個業務場景的大概介紹。從技術層面需要考慮實作的功能點:
分詞
與柯瑞已有數據進行匹配
按照匹配度對結果進行排序
分詞功能有現成的分詞器,所以整個需求的核心重點在於 如何與資料庫中的數據匹配並按照匹配度排序 。
3. 模糊匹配技術選型
方案一: 引入ES
方案二: 利用MySQL實作
本系統規模較小,單純為了實作這個功能引入ES成本較大,還要涉及到數據同步等問題, 系統復雜性會提高 ,所以盡量使用 MySQL 已有的功能進行實作。
MySQL提供了以下三種 模糊搜尋 的方式:
like匹配
:要求模式串與整個目標欄位完全匹配;
RegExp正則匹配
:要求目標欄位包含模式串即可;
Fulltext全文索引
:在欄位型別為
CHAR
,
VARCHAR
,
TEXT
的列上建立全文索引,執行SQL進行查詢。
針對於上述業務場景,對相關技術進行優劣分析:
like匹配
,無法滿足需求,所以
pass
;
全文索引
:可客製性差,不支持任意匹配查詢,
pass
;
正則匹配 :可實作任意模式匹配,缺點在於執行效率不如全文索引。
針對於這個場景,記錄數目相對來說沒有那麽多,所以對於效率稍低的結果可以接受,因此技術選型方面采用
RegExp正則匹配
來實作
模糊匹配
的需求。
4. 實作效果展示
5. 核心程式碼
整個邏輯基於 提取公司名稱關鍵資訊 -->分詞 --> 匹配 三個核心步驟。
5.1 提取公司關鍵資訊
對輸入的公司名稱去除
廢料
,保留關鍵資訊。這裏的廢料指的是地名,圓括弧,以及集團,股份,有限等。
匹配前處理公司名稱
/**
* 匹配前去除公司名稱的無意義資訊
* @param targetCompanyName
* @return
*/
private String formatCompanyName(String targetCompanyName){
String regex = "(?<province>[^省]+自治區|.*?省|.*?行政區|.*?市)" +
"?(?<city>[^市]+自治州|.*?地區|.*?行政單位|.+盟|市轄區|.*?市|.*?縣)" +
"?(?<county>[^(區|市|縣|旗|島)]+區|.*?市|.*?縣|.*?旗|.*?島)" +
"?(?<village>.*)";
Matcher matcher = Pattern.compile(regex).matcher(targetCompanyName);
while(matcher.find()){
String province = matcher.group("province");
log.info("province:{}",province);
if (StringUtils.isNotBlank(province) && targetCompanyName.contains(province)){
targetCompanyName = targetCompanyName.replace(province,"");
}
log.info("處理完省份的公司名稱:{}",targetCompanyName);
String city = matcher.group("city");
log.info("city:{}",city);
if (StringUtils.isNotBlank(city) && targetCompanyName.contains(city)){
targetCompanyName = targetCompanyName.replace(city,"");
}
log.info("處理完城市的公司名稱:{}",targetCompanyName);
String county = matcher.group("county");
log.info("county:{}",county);
if (StringUtils.isNotBlank(county) && targetCompanyName.contains(county)){
targetCompanyName = targetCompanyName.replace(county,"");
}
log.info("處理完區縣級的公司名稱:{}",targetCompanyName);
}
String[][] address = AddressUtil.ADDRESS;
for (String [] city: address) {
for (String b : city ) {
if (targetCompanyName.contains(b)){
targetCompanyName = targetCompanyName.replace(b, "");
}
}
}
log.info("處理後的公司名稱:{}",targetCompanyName);
return targetCompanyName;
}
地名工具類
public class AddressUtil {
public static final String[][] ADDRESS = {
{"北京"},
{"天津"},
{"安徽","安慶","蚌埠","亳州","巢湖","池州","滁州","阜陽","合肥","淮北","淮南","黃山","六安","馬鞍山","宿州","銅陵","蕪湖","宣城"},
{"澳門"},
{"香港"},
{"福建","福州","龍巖","南平","寧德","莆田","泉州","廈門","漳州"},
{"甘肅","白銀","定西","甘南藏族自治州","嘉峪關","金昌","酒泉","蘭州","臨夏回族自治州","隴南","平涼","慶陽","天水","武威","張掖"},
{"廣東","潮州","東莞","佛山","廣州","河源","惠州","江門","揭陽","茂名","梅州","清遠","汕頭","汕尾","韶關","深圳","陽江","雲浮","湛江","肇慶","中山","珠海"},
{"廣西","百色","北海","崇左","防城港","貴港","桂林","河池","賀州","來賓","柳州","南寧","欽州","梧州","玉林"},
{"貴州","安順","畢節地區","貴陽","六盤水","黔東南苗族侗族自治州","黔南布依族苗族自治州","黔西南布依族苗族自治州","銅仁地區","遵義"},
{"海南","海口","三亞","直轄縣級行政區劃"},
{"河北","保定","滄州","承德","邯鄲","衡水","廊坊","秦皇島","石家莊","唐山","邢台","張家口"},
{"河南","安陽","鶴壁","焦作","開封","洛陽","漯河","南陽","平頂山","濮陽","三門峽","商丘","新鄉","信陽","許昌","鄭州","周口","駐馬店"},
{"黑龍江","大慶","大興安嶺地區","哈爾濱","鶴崗","黑河","雞西","佳木斯","牡丹江","七台河","齊齊哈爾","雙鴨山","綏化","伊春"},
{"湖北","鄂州","恩施土家族苗族自治州","黃岡","黃石","荊門","荊州","十堰","隨州","武漢","鹹寧","襄樊","孝感","宜昌"},
{"湖南","長沙","常德","郴州","衡陽","懷化","婁底","邵陽","湘潭","湘西土家族苗族自治州","益陽","永州","嶽陽","張家界","株洲"},
{"吉林","白城","白山","長春","吉林","遼源","四平","松原","通化","延邊北韓族自治州"},
{"江蘇","常州","淮安","連雲港","南京","南通","蘇州","宿遷","泰州","無錫","徐州","鹽城","揚州","鎮江"},
{"江西","撫州","贛州","吉安","景德鎮","九江","南昌","萍鄉","上饒","新余","宜春","鷹潭"},
{"遼寧","鞍山","本溪","朝陽","大連","丹東","撫順","阜新","葫蘆島","錦州","遼陽","盤錦","沈陽","鐵嶺","營口"},
{"內蒙古","阿拉善盟","巴彥淖爾","包頭","赤峰","鄂爾多斯","呼和浩特","呼倫貝爾","通遼","烏海","烏蘭察布","錫林郭勒盟","興安盟"},
{"寧夏回族","固原","石嘴山","吳忠","銀川","中衛"},
{"青海","果洛藏族自治州","海北藏族自治州","海東地區","海南藏族自治州","海西蒙古族藏族自治州","黃南藏族自治州","西寧","玉樹藏族自治州"},
{"山東","濱州","德州","東營","菏澤","濟南","濟寧","萊蕪","聊城","臨沂","青島","日照","泰安","威海","濰坊","煙台","棗莊","淄博"},
{"山西","長治","大同","晉城","晉中","臨汾","呂梁","朔州","太原","忻州","陽泉","運城"},
{"陜西","安康","寶雞","漢中","商洛","銅川","渭南","西安","鹹陽","延安","榆林"},
{"上海"},
{"四川","阿壩藏族羌族自治州","巴中","成都","達州","德陽","甘孜藏族自治州","廣安","廣元","樂山","涼山彜族自治州","瀘州","眉山","綿陽","內江","南充","攀枝花","遂寧","雅安","宜賓","資陽","自貢"},
{"西藏","阿裏地區","昌都地區","拉薩","林芝地區","那曲地區","日喀則地區","山南地區"},
{"新疆維吾爾","阿克蘇地區","阿勒泰地區","巴音郭楞蒙古自治州","博爾塔拉蒙古自治州","昌吉回族自治州","哈密地區","和田地區","喀什地區","克拉瑪依","克孜勒蘇柯爾克孜自治州","塔城地區","吐魯番地區","烏魯木齊","伊犁哈薩克自治州","直轄縣級行政區劃"},
{"雲南","保山","楚雄彜族自治州","大理白族自治州","德宏傣族景頗族自治州","迪慶藏族自治州","紅河哈尼族彜族自治州","昆明","麗江","臨滄","怒江僳僳族自治州","普洱","曲靖","文山壯族苗族自治州","西雙版納傣族自治州","玉溪","昭通"},
{"浙江","杭州","湖州","嘉興","金華","麗水","寧波","衢州","紹興","台州","溫州","舟山"},
{"重慶"},
{"台灣","台北","高雄","基隆","台中","台南","新竹","嘉義"},
};
}
5.2 分詞相關程式碼
pom檔:引入IK分詞器相關依賴
<!-- ikAnalyzer 中文分詞器 -->
<dependency>
<groupId>com.janeluo</groupId>
<artifactId>ikanalyzer</artifactId>
<version>2012_u6</version>
<exclusions>
<exclusion>
<groupId>org.apache.lucene</groupId>
<artifactId>lucene-core</artifactId>
</exclusion>
<exclusion>
<groupId>org.apache.lucene</groupId>
<artifactId>lucene-queryparser</artifactId>
</exclusion>
<exclusion>
<groupId>org.apache.lucene</groupId>
<artifactId>lucene-analyzers-common</artifactId>
</exclusion>
</exclusions>
</dependency>
<!-- lucene-queryParser 查詢分析器模組 -->
<dependency>
<groupId>org.apache.lucene</groupId>
<artifactId>lucene-queryparser</artifactId>
<version>7.3.0</version>
</dependency>
IKAnalyzerSupport類:用於配置分詞器
@Slf4j
public class IKAnalyzerSupport {
/**
* IK分詞
* @param target
* @return
*/
public static List<String> iKSegmenterToList(String target) throws Exception {
if (StringUtils.isEmpty(target)){
return new ArrayList();
}
List<String> result = new ArrayList<>();
StringReader sr = new StringReader(target);
// false:關閉智慧分詞 (對分詞的精度影響較大)
IKSegmenter ik = new IKSegmenter(sr, true);
Lexeme lex;
while((lex=ik.next())!=null) {
String lexemeText = lex.getLexemeText();
result.add(lexemeText);
}
return result;
}
}
ServiceImpl類:進行分詞處理
/**
* 對目標公司名稱進行分詞
* @param targetCompanyName
* @return
*/
private String splitWord(String targetCompanyName){
log.info("對處理後端公司名稱進行分詞");
List<String> splitWord = new ArrayList<>();
String result = targetCompanyName;
try {
splitWord = iKSegmenterToList(targetCompanyName);
result = splitWord.stream().map(String::valueOf).distinct().collect(Collectors.joining("|")) ;
log.info("分詞結果:{}",result);
} catch (Exception e) {
log.error("分詞報錯:{}",e.getMessage());
}
return result;
}
5.3 匹配
ServiceImpl類:匹配核心程式碼
public JsonResult matchCompanyName(CompanyDTO companyDTO, String accessToken, String localIp) {
// 對公司名稱進行處理
String sourceCompanyName = companyDTO.getCompanyName();
String targetCompanyName = sourceCompanyName;
log.info("處理前公司名稱:{}",targetCompanyName);
// 處理圓括弧
targetCompanyName = targetCompanyName.replaceAll("[(]|[)]|[(]|[)]","");
// 處理公司相關關鍵詞
targetCompanyName = targetCompanyName.replaceAll("[(集團|股份|有限|責任|分公司)]", "");
if (!targetCompanyName.contains("銀行")){
// 去除行政區域
targetCompanyName = formatCompanyName(targetCompanyName);
}
// 分詞
String splitCompanyName = splitWord(targetCompanyName);
// 匹配
List<Company> matchedCompany = companyRepository.queryMatchCompanyName(splitCompanyName,targetCompanyName);
List<String> result = new ArrayList();
for (Company companyInfo : matchedCompany) {
result.add(companyInfo.getCompanyName());
if (companyDTO.getCompanyId().equals(companyInfo.getCompanyId())){
result.remove(companyInfo.getCompanyName());
}
}
return JsonResult.successResult(result);
}
Repository類:編寫SQL語句
/**
* 模糊匹配公司名稱
* @param companyNameRegex 分詞後的公司名稱
* @param companyName 分詞前的公司名稱
* @return
*/
@Query(value =
"SELECT * FROM company WHERE isDeleted = '0' and companyName REGEXP ?1
ORDER BY length(REPLACE(companyName,?2,''))/length(companyName) ",
nativeQuery = true)
List<Company> queryMatchCompanyName(String companyNameRegex,String companyName);
按照匹配度排序
這個功能點,
LENGTH(companyName)
返回companyName的長度,
LENGTH(REPLACE(companyName, ?2, ''))
計算出companyName中關鍵詞出現的次數。透過這種方式,我們可以根據匹配程度進行排序,匹配次數越多的公司名稱排序越靠前。
參考資料
zhuanlan.zhihu.com/p/343198664 [1] 【MySQL模糊搜尋】
blog.csdn.net/Cy_LightBul… [2] 【IK分詞器整合Spring Boot】
參考資料
[1]MySQL模糊搜尋: https://zhuanlan.zhihu.com/p/343198664 [2]IK分詞器整合Spring Boot: https://blog.csdn.net/Cy_LightBule/article/details/107181771
👉 歡迎 ,你將獲得: 專屬的計畫實戰 / Java 學習路線 / 一對一提問 / 學習打卡 / 贈書福利
全棧前後端分離部落格計畫 1.0 版本完結啦,2.0 正在更新中 ... , 演示連結 : http://116.62.199.48/ ,全程手摸手,後端 + 前端全棧開發,從 0 到 1 講解每個功能點開發步驟,1v1 答疑,直到計畫上線。 目前已更新了219小節,累計37w+字,講解圖:1492張,還在持續爆肝中.. 後續還會上新更多計畫,目標是將Java領域典型的計畫都整一波,如秒殺系統, 線上商城, IM即時通訊,Spring Cloud Alibaba 等等,
1.
2.
3.
4.
最近面試BAT,整理一份面試資料【Java面試BATJ通關手冊】,覆蓋了Java核心技術、JVM、Java並行、SSM、微服務、資料庫、數據結構等等。
獲取方式:點「在看」,關註公眾號並回復 Java 領取,更多內容陸續奉上。
PS:因公眾號平台更改了推播規則,如果不想錯過內容,記得讀完點一下「在看」,加個「星標」,這樣每次新文章推播才會第一時間出現在你的訂閱列表裏。
點「在看」支持小哈呀,謝謝啦