當前位置: 妍妍網 > 碼農

不引入ES,如何利用MySQL實作模糊匹配

2024-05-24碼農

架構師(JiaGouX)

我們都是架構師!
架構未來,你來不來?

業務場景概述

目標是實作一個公司的申請審批流程,整個業務流程涉及到兩種角色,分別為商務角色與管理員角色。整個流程如下圖所示:

核心流程總結為一句話: 商務角色申請添加公司後由管理員進行審批。

商務在添加公司時,可能為了方便,直接填寫公司簡稱,而公司全稱可能之前已經被添加過了, 為了防止添加重復的公司 ,所以管理員在針對公司資訊審批之前,需要檢視以往添加的公司資訊裏有無同一個公司。

實作思路

以上是一個業務場景的大概介紹。從技術層面需要考慮實作的功能點:

  • 分詞

  • 與柯瑞已有數據進行匹配

  • 按照匹配度對結果進行排序

  • 分詞功能有現成的分詞器,所以整個需求的核心重點在於 如何與資料庫中的數據匹配並按照匹配度排序。

    模糊匹配技術選型

  • 方案一:引入ES

  • 方案二:利用MySQL實作 本系統規模較小,單純為了實作這個功能引入ES成本較大,還要涉及到數據同步等問題,系統復雜性會提高,所以盡量使用MySQL已有的功能進行實作。

  • MySQL提供了以下三種模糊搜尋的方式:

  • like匹配:要求模式串與整個目標欄位完全匹配;

  • RegExp正則匹配:要求目標欄位包含模式串即可;

  • Fulltext全文索引:在欄位型別為CHAR,VARCHAR,TEXT的列上建立全文索引,執行SQL進行查詢。

  • 針對於上述業務場景,對相關技術進行優劣分析:

  • like匹配,無法滿足需求,所以pass;

  • 全文索引:可客製性差,不支持任意匹配查詢,pass;

  • 正則匹配:可實作任意模式匹配,缺點在於執行效率不如全文索引。

  • 針對於這個場景,記錄數目相對來說沒有那麽多,所以對於效率稍低的結果可以接受,因此技術選型方面采用RegExp正則匹配來實作模糊匹配的需求。

    實作效果展示

    核心程式碼

    整個邏輯基於 提取公司名稱關鍵資訊 -->分詞 --> 匹配 三個核心步驟

    提取公司關鍵資訊

    對輸入的公司名稱去除廢料,保留關鍵資訊。這裏的廢料指的是地名,圓括弧,以及集團,股份,有限等。

    匹配前處理公司名稱
    /**
    * 匹配前去除公司名稱的無意義資訊
    * @paramtargetCompanyName
    * @return
    */
    privateStringformatCompanyName(String targetCompanyName){
    String regex ="(?<province>[^省]+自治區|.*?省|.*?行政區|.*?市)"+
    "?(?<city>[^市]+自治州|.*?地區|.*?行政單位|.+盟|市轄區|.*?市|.*?縣)"+
    "?(?<county>[^(區|市|縣|旗|島)]+區|.*?市|.*?縣|.*?旗|.*?島)"+
    "?(?<village>.*)";
    Matcher matcher =Pattern.compile(regex).matcher(targetCompanyName);
    while(matcher.find()){
    String province = matcher.group("province");
    log.info("province:{}",province);
    if(StringUtils.isNotBlank(province)&& targetCompanyName.contains(province)){
    targetCompanyName = targetCompanyName.replace(province,"");
    }
    log.info("處理完省份的公司名稱:{}",targetCompanyName);
    String city = matcher.group("city");
    log.info("city:{}",city);
    if(StringUtils.isNotBlank(city)&& targetCompanyName.contains(city)){
    targetCompanyName = targetCompanyName.replace(city,"");
    }
    log.info("處理完城市的公司名稱:{}",targetCompanyName);
    String county = matcher.group("county");
    log.info("county:{}",county);
    if(StringUtils.isNotBlank(county)&& targetCompanyName.contains(county)){
    targetCompanyName = targetCompanyName.replace(county,"");
    }
    log.info("處理完區縣級的公司名稱:{}",targetCompanyName);
    }
    String[][] address =AddressUtil.ADDRESS;
    for(String[] city: address){
    for(Stringb: city ){
    if(targetCompanyName.contains(b)){
    targetCompanyName = targetCompanyName.replace(b,"");
    }
    }
    }
    log.info("處理後的公司名稱:{}",targetCompanyName);
    return targetCompanyName;
    }

    地名工具類
    public classAddressUtil{
    publicstatic final String[][]ADDRESS={
    {"北京"},
    {"天津"},
    {"安徽","安慶","蚌埠","亳州","巢湖","池州","滁州","阜陽","合肥","淮北","淮南","黃山","六安","馬鞍山","宿州","銅陵","蕪湖","宣城"},
    {"澳門"},
    {"香港"},
    {"福建","福州","龍巖","南平","寧德","莆田","泉州","廈門","漳州"},
    {"甘肅","白銀","定西","甘南藏族自治州","嘉峪關","金昌","酒泉","蘭州","臨夏回族自治州","隴南","平涼","慶陽","天水","武威","張掖"},
    {"廣東","潮州","東莞","佛山","廣州","河源","惠州","江門","揭陽","茂名","梅州","清遠","汕頭","汕尾","韶關","深圳","陽江","雲浮","湛江","肇慶","中山","珠海"},
    {"廣西","百色","北海","崇左","防城港","貴港","桂林","河池","賀州","來賓","柳州","南寧","欽州","梧州","玉林"},
    {"貴州","安順","畢節地區","貴陽","六盤水","黔東南苗族侗族自治州","黔南布依族苗族自治州","黔西南布依族苗族自治州","銅仁地區","遵義"},
    {"海南","海口","三亞","直轄縣級行政區劃"},
    {"河北","保定","滄州","承德","邯鄲","衡水","廊坊","秦皇島","石家莊","唐山","邢台","張家口"},
    {"河南","安陽","鶴壁","焦作","開封","洛陽","漯河","南陽","平頂山","濮陽","三門峽","商丘","新鄉","信陽","許昌","鄭州","周口","駐馬店"},
    {"黑龍江","大慶","大興安嶺地區","哈爾濱","鶴崗","黑河","雞西","佳木斯","牡丹江","七台河","齊齊哈爾","雙鴨山","綏化","伊春"},
    {"湖北","鄂州","恩施土家族苗族自治州","黃岡","黃石","荊門","荊州","十堰","隨州","武漢","鹹寧","襄樊","孝感","宜昌"},
    {"湖南","長沙","常德","郴州","衡陽","懷化","婁底","邵陽","湘潭","湘西土家族苗族自治州","益陽","永州","嶽陽","張家界","株洲"},
    {"吉林","白城","白山","長春","吉林","遼源","四平","松原","通化","延邊北韓族自治州"},
    {"江蘇","常州","淮安","連雲港","南京","南通","蘇州","宿遷","泰州","無錫","徐州","鹽城","揚州","鎮江"},
    {"江西","撫州","贛州","吉安","景德鎮","九江","南昌","萍鄉","上饒","新余","宜春","鷹潭"},
    {"遼寧","鞍山","本溪","朝陽","大連","丹東","撫順","阜新","葫蘆島","錦州","遼陽","盤錦","沈陽","鐵嶺","營口"},
    {"內蒙古","阿拉善盟","巴彥淖爾","包頭","赤峰","鄂爾多斯","呼和浩特","呼倫貝爾","通遼","烏海","烏蘭察布","錫林郭勒盟","興安盟"},
    {"寧夏回族","固原","石嘴山","吳忠","銀川","中衛"},
    {"青海","果洛藏族自治州","海北藏族自治州","海東地區","海南藏族自治州","海西蒙古族藏族自治州","黃南藏族自治州","西寧","玉樹藏族自治州"},
    {"山東","濱州","德州","東營","菏澤","濟南","濟寧","萊蕪","聊城","臨沂","青島","日照","泰安","威海","濰坊","煙台","棗莊","淄博"},
    {"山西","長治","大同","晉城","晉中","臨汾","呂梁","朔州","太原","忻州","陽泉","運城"},
    {"陜西","安康","寶雞","漢中","商洛","銅川","渭南","西安","鹹陽","延安","榆林"},
    {"上海"},
    {"四川","阿壩藏族羌族自治州","巴中","成都","達州","德陽","甘孜藏族自治州","廣安","廣元","樂山","涼山彜族自治州","瀘州","眉山","綿陽","內江","南充","攀枝花","遂寧","雅安","宜賓","資陽","自貢"},
    {"西藏","阿裏地區","昌都地區","拉薩","林芝地區","那曲地區","日喀則地區","山南地區"},
    {"新疆維吾爾","阿克蘇地區","阿勒泰地區","巴音郭楞蒙古自治州","博爾塔拉蒙古自治州","昌吉回族自治州","哈密地區","和田地區","喀什地區","克拉瑪依","克孜勒蘇柯爾克孜自治州","塔城地區","吐魯番地區","烏魯木齊","伊犁哈薩克自治州","直轄縣級行政區劃"},
    {"雲南","保山","楚雄彜族自治州","大理白族自治州","德宏傣族景頗族自治州","迪慶藏族自治州","紅河哈尼族彜族自治州","昆明","麗江","臨滄","怒江僳僳族自治州","普洱","曲靖","文山壯族苗族自治州","西雙版納傣族自治州","玉溪","昭通"},
    {"浙江","杭州","湖州","嘉興","金華","麗水","寧波","衢州","紹興","台州","溫州","舟山"},
    {"重慶"},
    {"台灣","台北","高雄","基隆","台中","台南","新竹","嘉義"},
    };
    }

    分詞相關程式碼

    pom檔:引入IK分詞器相關依賴

    <!-- ikAnalyzer 中文分詞器 -->
    <dependency>
    <groupId>com.janeluo</groupId>
    <artifactId>ikanalyzer</artifactId>
    <version>2012_u6</version>
    <exclusions>
    <exclusion>
    <groupId>org.apache.lucene</groupId>
    <artifactId>lucene-core</artifactId>
    </exclusion>
    <exclusion>
    <groupId>org.apache.lucene</groupId>
    <artifactId>lucene-queryparser</artifactId>
    </exclusion>
    <exclusion>
    <groupId>org.apache.lucene</groupId>
    <artifactId>lucene-analyzers-common</artifactId>
    </exclusion>
    </exclusions>
    </dependency>
    <!-- lucene-queryParser 查詢分析器模組 -->
    <dependency>
    <groupId>org.apache.lucene</groupId>
    <artifactId>lucene-queryparser</artifactId>
    <version>7.3.0</version>
    </dependency>

    IKAnalyzerSupport類:用於配置分詞器

    @Slf4j
    public classIKAnalyzerSupport{
    /**
    * IK分詞
    * @paramtarget
    * @return
    */
    publicstaticList<String>iKSegmenterToList(String target) throws Exception{
    if(StringUtils.isEmpty(target)){
    returnnewArrayList();
    }
    List<String> result =newArrayList<>();
    StringReader sr =newStringReader(target);
    // false:關閉智慧分詞 (對分詞的精度影響較大)
    IKSegmenter ik =newIKSegmenter(sr,true);
    Lexeme lex;
    while((lex=ik.next())!=null){
    String lexemeText = lex.getLexemeText();
    result.add(lexemeText);
    }
    return result;
    }
    }
    ServiceImpl類:進行分詞處理
    /**
    * 對目標公司名稱進行分詞
    * @paramtargetCompanyName
    * @return
    */
    privateStringsplitWord(String targetCompanyName){
    log.info("對處理後端公司名稱進行分詞");
    List<String> splitWord =newArrayList<>();
    String result = targetCompanyName;
    try{
    splitWord =iKSegmenterToList(targetCompanyName);
    result = splitWord.stream().map(String::valueOf).distinct().collect(Collectors.joining("|"));
    log.info("分詞結果:{}",result);
    }catch(Exception e){
    log.error("分詞報錯:{}",e.getMessage());
    }
    return result;
    }

    匹配

    ServiceImpl類:匹配核心程式碼

    publicJsonResultmatchCompanyName(CompanyDTO companyDTO,String accessToken,String localIp){
    // 對公司名稱進行處理
    String sourceCompanyName = companyDTO.getCompanyName();
    String targetCompanyName = sourceCompanyName;
    log.info("處理前公司名稱:{}",targetCompanyName);
    // 處理圓括弧
    targetCompanyName = targetCompanyName.replaceAll("[(]|[)]|[(]|[)]","");
    // 處理公司相關關鍵詞
    targetCompanyName = targetCompanyName.replaceAll("[(集團|股份|有限|責任|分公司)]","");
    if(!targetCompanyName.contains("銀行")){
    // 去除行政區域
    targetCompanyName =formatCompanyName(targetCompanyName);
    }
    // 分詞
    String splitCompanyName =splitWord(targetCompanyName);
    // 匹配
    List<Company> matchedCompany = companyRepository.queryMatchCompanyName(splitCompanyName,targetCompanyName);
    List<String> result =newArrayList();
    for(Company companyInfo : matchedCompany){
    result.add(companyInfo.getCompanyName());
    if(companyDTO.getCompanyId().equals(companyInfo.getCompanyId())){
    result.remove(companyInfo.getCompanyName());
    }
    }
    returnJsonResult.successResult(result);
    }

    Repository類:編寫SQL語句

    /**
    * 模糊匹配公司名稱
    * @paramcompanyNameRegex 分詞後的公司名稱
    * @paramcompanyName 分詞前的公司名稱
    * @return
    */
    @Query(value =
    "SELECT*FROM company WHERE isDeleted ='0' and companyName REGEXP?1
    ORDERBYlength(REPLACE(companyName,?2,''))/length(companyName) ",
    nativeQuery =true)
    List<Company>queryMatchCompanyName(String companyNameRegex,String companyName);

    按照匹配度排序這個功能點,LENGTH(companyName)返回companyName的長度,LENGTH(REPLACE(companyName, ?2, ''))計算出companyName中關鍵詞出現的次數。透過這種方式,我們可以根據匹配程度進行排序,匹配次數越多的公司名稱排序越靠前。


    如喜歡本文,請點選右上角,把文章分享到朋友圈
    如有想了解學習的技術點,請留言給若飛安排分享

    因公眾號更改推播規則,請點「在看」並加「星標」 第一時間獲取精彩技術分享

    ·END·

    相關閱讀:

    作者:離開地球表面_99

    來源:https://juejin.cn/post/7340574992256466953

    版權申明:內容來源網路,僅供學習研究,版權歸原創者所有。如有侵權煩請告知,我們會立即刪除並表示歉意。謝謝!

    架構師

    我們都是架構師!

    關註 架構師(JiaGouX),添加「星標」

    獲取每天技術幹貨,一起成為牛逼架構師

    技術群請 加若飛: 1321113940 進架構師群

    投稿、合作、版權等信箱: [email protected]