项目简介
ScrapeGraphAI 是一个基于Python的Web抓取库,使用大型语言模型和直接图逻辑来创建针对网站、文档和XML文件的抓取流程。用户只需指定想要抽取的信息,该库便能自动完成抓取任务。该项目强调易用性和高效性,支持通过命令行界面或代码实现灵活的数据抓取,并提供丰富的文档支持,帮助用户快速上手。
扫码加入交流群
获得更多技术支持和交流
(请注明自己的职业)
快速安装
这是 Scrapegraph-ai 的官方 PyPI 页面的参考信息
https://pypi.org/project/scrapegraphai/
pip install scrapegraphai
你还需要安装 Playwright 用于基于 JavaScript 的网页抓取:
playwright install
注意:建议在虚拟环境中安装该库,以避免与其他库冲突
DEMO
https://scrapegraph-ai-demo.streamlit.app/
使用
你可以使用 SmartScraper 类通过提示从网站中提取信息。
SmartScraper 类是一个直接图实现,使用了网页抓取流程中最常见的节点。更多信息请查看文档。
https://scrapegraph-ai.readthedocs.io/en/latest/
案例 1:使用 Ollama 提取信息记得要单独下载 Ollama 的模型!
from scrapegraphai.graphs import SmartScraperGraph
graph_config = {
"llm": {
"model": "ollama/mistral",
"temperature": 0,
"format": "json", # Ollama needs the format to be specified explicitly
"base_url": "http://localhost:11434", # set Ollama URL
},
"embeddings": {
"model": "ollama/nomic-embed-text",
"base_url": "http://localhost:11434", # set Ollama URL
}
}
smart_scraper_graph = SmartScraperGraph(
prompt="List me all the articles",
# also accepts a string with the already downloaded HTML code
source="https://perinim.github.io/projects",
config=graph_config
)
result = smart_scraper_graph.run()
print(result)
案例 2:使用 Docker 提取信息
注意:在使用本地模型之前,记得创建 Docker 容器!
docker-compose up -d
docker exec -it ollama ollama pull stablelm-zephyr
你可以使用 Ollama 上可用的模型或者你自己的模型,而不是使用 stablelm-zephyr。
from scrapegraphai.graphs import SmartScraperGraph
graph_config = {
"llm": {
"model": "ollama/mistral",
"temperature": 0,
"format": "json", # Ollama needs the format to be specified explicitly
# "model_tokens": 2000, # set context length arbitrarily
},
}
smart_scraper_graph = SmartScraperGraph(
prompt="List me all the articles",
# also accepts a string with the already downloaded HTML code
source="https://perinim.github.io/projects",
config=graph_config
)
result = smart_scraper_graph.run()
print(result)
案例 3:使用 OpenAI 模型提取信息
from scrapegraphai.graphs import SmartScraperGraph
OPENAI_API_KEY = "YOUR_API_KEY"
graph_config = {
"llm": {
"api_key": OPENAI_API_KEY,
"model": "gpt-3.5-turbo",
},
}
smart_scraper_graph = SmartScraperGraph(
prompt="List me all the articles",
# also accepts a string with the already downloaded HTML code
source="https://perinim.github.io/projects",
config=graph_config
)
result = smart_scraper_graph.run()
print(result)
案例 4:使用 Groq 提取信息
from scrapegraphai.graphs import SmartScraperGraph
from scrapegraphai.utils import prettify_exec_info
groq_key = os.getenv("GROQ_APIKEY")
graph_config = {
"llm": {
"model": "groq/gemma-7b-it",
"api_key": groq_key,
"temperature": 0
},
"embeddings": {
"model": "ollama/nomic-embed-text",
"temperature": 0,
"base_url": "http://localhost:11434",
},
"headless": False
}
smart_scraper_graph = SmartScraperGraph(
prompt="List me all the projects with their description and the author.",
source="https://perinim.github.io/projects",
config=graph_config
)
result = smart_scraper_graph.run()
print(result)
案例 5:使用 Azure 提取信息
from langchain_openai import AzureChatOpenAI
from langchain_openai import AzureOpenAIEmbeddings
lm_model_instance = AzureChatOpenAI(
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
azure_deployment=os.environ["AZURE_OPENAI_CHAT_DEPLOYMENT_NAME"]
)
embedder_model_instance = AzureOpenAIEmbeddings(
azure_deployment=os.environ["AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
graph_config = {
"llm": {"model_instance": llm_model_instance},
"embeddings": {"model_instance": embedder_model_instance}
}
smart_scraper_graph = SmartScraperGraph(
prompt="""List me all the events, with the following fields: company_name, event_name, event_start_date, event_start_time,
event_end_date, event_end_time, location, event_mode, event_category,
third_party_redirect, no_of_days,
time_in_hours, hosted_or_attending, refreshments_type,
registration_available, registration_link""",
source="https://www.hmhco.com/event",
config=graph_config
)
案例 6:使用 Gemini 提取信息
from scrapegraphai.graphs import SmartScraperGraph
GOOGLE_APIKEY = "YOUR_API_KEY"
# Define the configuration for the graph
graph_config = {
"llm": {
"api_key": GOOGLE_APIKEY,
"model": "gemini-pro",
},
}
# Create the SmartScraperGraph instance
smart_scraper_graph = SmartScraperGraph(
prompt="List me all the articles",
source="https://perinim.github.io/projects",
config=graph_config
)
result = smart_scraper_graph.run()
print(result)
以上三个案例的输出都将是一个包含提取信息的字典,例如:
{
'titles': [
'Rotary Pendulum RL'
],
'descriptions': [
'Open Source project aimed at controlling a real life rotary pendulum using RL algorithms'
]
}
项目链接
https://github.com/VinciGit00/Scrapegraph-ai
关注「 开源AI项目落地 」公众号
与AI时代更靠近一点