當前位置: 妍妍網 > 碼農

開發者必備!快速掌握onnxruntime實作YOWOv2視訊動作檢測技術!

2024-03-31碼農

效果

介紹

YOWOv2(A Stronger yet Efficient Multi-level Detection Framework for Real-time Spatio-temporal Action)一種新穎的即時檢測框架,用於空間-時間動作檢測。

YOWOv2系列包括YOWOv2-Tiny、YOWOv2Medium和YOWOv2-Large等,適用於不同計算能力的平台。與之前版本的YOWO相比,YOWOv2被設計為一個多級動作檢測框架,有助於檢測較小的動作例項。

YOWOv2也是一種無錨點的動作檢測器,避免了YOWO中存在的錨框的缺點。在流行的基準數據集上,YOWOv2明顯優於YOWO和其他即時動作檢測器,並且差距很大。即使與功能強大但沒有速度優勢的基於3D CNN的方法相比,YOWOv2仍然表現出競爭力。

計畫

電腦配置

AMD Ryzen 7 7735H with Radeon Graphics 3.19GHz

模型資訊

Model Properties
-------------------------
---------------------------------------------------------------
Inputs
-------------------------
name:input
tensor:Float[1, 3, 16, 224, 224]
---------------------------------------------------------------
Outputs
-------------------------
name:conf_preds0
tensor:Float[1, 784, 1]
name:conf_preds1
tensor:Float[1, 196, 1]
name:conf_preds2
tensor:Float[1, 49, 1]
name:cls_preds0
tensor:Float[1, 784, 80]
name:cls_preds1
tensor:Float[1, 196, 80]
name:cls_preds2
tensor:Float[1, 49, 80]
name:reg_preds0
tensor:Float[1, 784, 4]
name:reg_preds1
tensor:Float[1, 196, 4]
name:erg_preds2
tensor:Float[1, 49, 4]
---------------------------------------------------------------

程式碼

Form1.cs

using OpenCvSharp;
using OpenCvSharp.Extensions;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
namespace C__Onnx_YOWOv2視訊動作檢測
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
YOWOv2 mynet = new YOWOv2("model/yowo_v2_nano_ava.onnx""ava");
string videopath = "";
Mat currentFrame = new Mat();
VideoCapture capture;
private void button1_Click(object sender, EventArgs e)
{
if (videopath == "")
{
return;
}
int len_clip = mynet.len_clip;
float vis_thresh = 0.2f;
textBox1.Text = "正在檢測,請稍後……";
//videopath = "dataset/ucf24_demo/v_Basketball_g01_c02.mp4";
string savepath = "result.mp4";
VideoCapture vcapture = new VideoCapture(videopath);
if (!vcapture.IsOpened())
{
MessageBox.Show("開啟視訊檔失敗");
return;
}
VideoWriter vwriter = new VideoWriter(savepath, FourCC.X264, vcapture.Fps, new OpenCvSharp.Size(vcapture.FrameWidth, vcapture.FrameHeight));
Mat frame = new Mat();
List<Mat> video_clip = new List<Mat>();
int index = 0;
while (vcapture.Read(frame))
{
if (frame.Empty())
{
MessageBox.Show("開啟視訊檔失敗");
return;
}
if (video_clip.Count <= 0)
{
for (int i = 0; i < len_clip; i++)
{
video_clip.Add(frame);
}
}
video_clip.Add(frame);
video_clip.RemoveAt(0);
if (mynet.multi_hot)
{
List<Bbox> boxes = new List<Bbox>();
List<float> det_conf = new List<float>();
List<List<float>> cls_conf = new List<List<float>>();
List<int> keep_inds = mynet.detect_multi_hot(video_clip, boxes, det_conf, cls_conf); //keep_inds記錄vector裏面的有效檢測框的序號
Mat dstimg = Common.vis_multi_hot(frame, boxes, det_conf, cls_conf, keep_inds, vis_thresh);
//Cv2.ImWrite("img/" + (index++).ToString() + ".jpg", dstimg);
vwriter.Write(dstimg);
dstimg.Dispose();
}
else
{
List<Bbox> boxes = new List<Bbox>();
List<float> det_conf = new List<float>();
List<int> cls_id = new List<int>();
List<int> keep_inds = mynet.detect_one_hot(video_clip, boxes, det_conf, cls_id); //keep_inds記錄vector裏面的有效檢測框的序號
Mat dstimg = Common.vis_one_hot(frame, boxes, det_conf, cls_id, keep_inds, vis_thresh, 0.4f);
vwriter.Write(dstimg);
dstimg.Dispose();
}
}
vcapture.Release();
vwriter.Release();
MessageBox.Show("檢測完成,點選確認後播放檢測後效果!");
textBox1.Text = "播放result.mp4";
videopath = "result.mp4";
capture = new VideoCapture(videopath);
if (!capture.IsOpened())
{
MessageBox.Show("開啟視訊檔失敗");
return;
}
capture.Read(currentFrame);
if (!currentFrame.Empty())
{
pictureBox1.Image = BitmapConverter.ToBitmap(currentFrame);
timer1.Interval = (int)(1000.0 / capture.Fps);
timer1.Enabled = true;
}
}
private void button2_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = "Video files MP4 files (*.mp4)|*.mp4";
ofd.InitialDirectory = Application.StartupPath;
if (ofd.ShowDialog() == DialogResult.OK)
{
videopath = ofd.FileName;
capture = new VideoCapture(videopath);
if (!capture.IsOpened())
{
MessageBox.Show("開啟視訊檔失敗");
return;
}
capture.Read(currentFrame);
if (!currentFrame.Empty())
{
pictureBox1.Image = BitmapConverter.ToBitmap(currentFrame);
timer1.Interval = (int)(1000.0 / capture.Fps);
timer1.Enabled = true;
}
}
}
private void timer1_Tick(object sender, EventArgs e)
{
capture.Read(currentFrame);
if (currentFrame.Empty())
{
//pictureBox1.Image = null;
timer1.Enabled = false;
capture.Release();
textBox1.Text = "播放完畢。";
return;
}
pictureBox1.Image = BitmapConverter.ToBitmap(currentFrame);
}
private void Form1_Load(object sender, EventArgs e)
{
videopath = "dataset/ucf24_demo/v_Basketball_g01_c02.mp4";
capture = new VideoCapture(videopath);
if (!capture.IsOpened())
{
MessageBox.Show("開啟視訊檔失敗");
return;
}
textBox1.Text = "播放v_Basketball_g01_c02.mp4";
capture.Read(currentFrame);
if (!currentFrame.Empty())
{
pictureBox1.Image = BitmapConverter.ToBitmap(currentFrame);
timer1.Interval = (int)(1000.0 / capture.Fps);
timer1.Enabled = true;
}
}
}
}

















YOWOv2.cs

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.InteropServices;
namespace C__Onnx_YOWOv2視訊動作檢測
{
public class YOWOv2
{
public int len_clip;
public bool multi_hot;
List<float> input_tensor_data = new List<float>();
int inpWidth;
int inpHeight;
float nms_thresh;
float conf_thresh;
int num_ class;
int topk = 40;
int[] strides = new int[] { 8, 16, 32 };
bool act_pose;
SessionOptions options;
InferenceSession onnx_session;
public YOWOv2(string modelpath, string dataset = "ava_v2.2"float nms_thresh_ = 0.5f, float conf_thresh_ = 0.1f, bool act_pose_ = false)
{
// 建立輸出會話,用於輸出模型讀取資訊
options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);// 設定為CPU上執行
// 建立推理模型類,讀取本地模型檔
onnx_session = new InferenceSession(modelpath, options);//model_path 為onnx模型檔的路徑
this.len_clip = 16;
this.inpHeight = 224;
this.inpWidth = 224;
if (dataset == "ava_v2.2" || dataset == "ava")
{
this.num_ class = 80;
this.multi_hot = true;
}
else
{
this.num_ class = 24;
this.multi_hot = false;
}
this.conf_thresh = conf_thresh_;
this.nms_thresh = nms_thresh_;
this.act_pose = act_pose_;
}
float[] ExtractMat(Mat src)
{
OpenCvSharp.Size size = src.Size();
int channels = src.Channels();
float[] result = new float[size.Width * size.Height * channels];
GCHandle resultHandle = default;
try
{
resultHandle = GCHandle.Alloc(result, GCHandleType.Pinned);
IntPtr resultPtr = resultHandle.AddrOfPinnedObject();
for (int i = 0; i < channels; ++i)
{
Mat cmat = new Mat(
src.Height, src.Width,
MatType.CV_32FC1,
resultPtr + i * size.Width * size.Height * sizeof(float));
Cv2.ExtractChannel(src, cmat, i);
cmat.Dispose();
}
}
finally
{
resultHandle.Free();
}
return result;
}
void preprocess(List<Mat> video_clip)
{
input_tensor_data.Clear();
for (int i = 0; i < this.len_clip; i++)
{
Mat resizeimg = new Mat();
Cv2.Resize(video_clip[i], resizeimg, new Size(this.inpWidth, this.inpHeight));
resizeimg.ConvertTo(resizeimg, MatType.CV_32FC3);
var data = ExtractMat(resizeimg);
resizeimg.Dispose();
input_tensor_data.AddRange(data.ToList());
}
}
void generate_proposal_multi_hot(int stride, float[] conf_pred, float[] cls_pred, float[] reg_pred, List<Bbox> boxes, List<float> det_conf, List<List<float>> cls_conf)
{
int feat_h = (int)Math.Ceiling((float)this.inpHeight / stride);
int feat_w = (int)Math.Ceiling((float)this.inpWidth / stride);
int area = feat_h * feat_w;
float[] conf_pred_i = new float[area];
for (int i = 0; i < area; i++)
{
conf_pred_i[i] = Common.sigmoid(conf_pred[i]);
}
List<int> topk_inds = Common.TopKIndex(conf_pred_i.ToList(), this.topk);
int length = this.num_ class;
if (this.act_pose)
{
length = 14;
}
for (int i = 0; i < topk_inds.Count; i++)
{
int ind = topk_inds[i];
if (conf_pred_i[ind] > this.conf_thresh)
{
int row = 0, col = 0;
Common.ind2sub(ind, feat_w, feat_h, ref row, ref col);
float cx = (col + 0.5f + reg_pred[ind * 4]) * stride;
float cy = (row + 0.5f + reg_pred[ind * 4 + 1]) * stride;
float w = (float)(Math.Exp(reg_pred[ind * 4 + 2]) * stride);
float h = (float)(Math.Exp(reg_pred[ind * 4 + 3]) * stride);
boxes.Add(new Bbox((int)(cx - 0.5 * w), (int)(cy - 0.5 * h), (int)(cx + 0.5 * w), (int)(cy + 0.5 * h)));
det_conf.Add(conf_pred_i[ind]);
float[] cls_conf_i = new float[length];
for (int j = 0; j < length; j++)
{
cls_conf_i[j] = Common.sigmoid(cls_pred[ind * this.num_ class + j]);
}
cls_conf.Add(cls_conf_i.ToList());
}
}
}
void generate_proposal_one_hot(int stride, float[] conf_pred, float[] cls_pred, float[] reg_pred, List<Bbox> boxes, List<float> det_conf, List<int> cls_id)
{
int feat_h = (int)Math.Ceiling((float)inpHeight / stride);
int feat_w = (int)Math.Ceiling((float)inpWidth / stride);
int area = feat_h * feat_w;
float[] det_scores_i = new float[area * this.num_ class];
for (int i = 0; i < area; i++)
{
for (int j = 0; j < this.num_ class; j++)
{
det_scores_i[i * this.num_ class + j] = (float)Math.Sqrt(Common.sigmoid(conf_pred[i]) * Common.sigmoid(cls_pred[i * this.num_ class + j]));
}
}
int num_topk = Math.Min(this.topk, area);
List<int> topk_inds = Common.TopKIndex(det_scores_i.ToList(), num_topk);
for (int i = 0; i < topk_inds.Count; i++)
{
int ind = topk_inds[i];
if (det_scores_i[ind] > this.conf_thresh)
{
det_conf.Add(det_scores_i[ind]);
int idx = ind % this.num_ class;
cls_id.Add(idx);
int row_ind = ind / this.num_ class;
int row = 0, col = 0;
Common.ind2sub(row_ind, feat_w, feat_h, ref row, ref col);
float cx = (col + 0.5f + reg_pred[row_ind * 4]) * stride;
float cy = (row + 0.5f + reg_pred[row_ind * 4 + 1]) * stride;
float w = (float)(Math.Exp(reg_pred[row_ind * 4 + 2]) * stride);
float h = (float)(Math.Exp(reg_pred[row_ind * 4 + 3]) * stride);
boxes.Add(new Bbox((int)(cx - 0.5 * w), (int)(cy - 0.5 * h), (int)(cx + 0.5 * w), (int)(cy + 0.5 * h)));
}
}
}
public List<int> detect_multi_hot(List<Mat> video_clip, List<Bbox> boxes, List<float> det_conf, List<List<float>> cls_conf)
{
if (video_clip.Count != this.len_clip)
{
Console.WriteLine("input frame number is not " + this.len_clip);
throw new Exception("input frame number is not " + this.len_clip);
}
int origin_h = video_clip[0].Rows;
int origin_w = video_clip[0].Cols;
this.preprocess(video_clip);
Tensor<float> input_tensor = new DenseTensor<float>(input_tensor_data.ToArray(), new[] { 1, 3, this.len_clip, this.inpHeight, this.inpWidth });
List<NamedOnnxValue> input_container = new List<NamedOnnxValue>
{
NamedOnnxValue.CreateFromTensor("input", input_tensor)
};
var ort_outputs = onnx_session.Run(input_container).ToArray();
float[] conf_preds0 = ort_outputs[0].AsTensor<float>().ToArray();
float[] conf_preds1 = ort_outputs[1].AsTensor<float>().ToArray();
float[] conf_preds2 = ort_outputs[2].AsTensor<float>().ToArray();
float[] cls_preds0 = ort_outputs[3].AsTensor<float>().ToArray();
float[] cls_preds1 = ort_outputs[4].AsTensor<float>().ToArray();
float[] cls_preds2 = ort_outputs[5].AsTensor<float>().ToArray();
float[] reg_preds0 = ort_outputs[6].AsTensor<float>().ToArray();
float[] reg_preds1 = ort_outputs[7].AsTensor<float>().ToArray();
float[] reg_preds2 = ort_outputs[8].AsTensor<float>().ToArray();
this.generate_proposal_multi_hot(this.strides[0], conf_preds0, cls_preds0, reg_preds0, boxes, det_conf, cls_conf);
this.generate_proposal_multi_hot(this.strides[1], conf_preds1, cls_preds1, reg_preds1, boxes, det_conf, cls_conf);
this.generate_proposal_multi_hot(this.strides[2], conf_preds2, cls_preds2, reg_preds2, boxes, det_conf, cls_conf);
List<int> keep_inds = Common.multi class_nms_ class_agnostic(boxes, det_conf, this.nms_thresh);
int max_hw = Math.Max(this.inpHeight, this.inpWidth);
float ratio_h = (float)((float)origin_h / max_hw);
float ratio_w = (float)((float)origin_w / max_hw);
for (int i = 0; i < keep_inds.Count; i++)
{
int ind = keep_inds[i];
boxes[ind].xmin = (int)(boxes[ind].xmin * ratio_w);
boxes[ind].ymin = (int)(boxes[ind].ymin * ratio_h);
boxes[ind].xmax = (int)(boxes[ind].xmax * ratio_w);
boxes[ind].ymax = (int)(boxes[ind].ymax * ratio_h);
}
return keep_inds;
}
public List<int> detect_one_hot(List<Mat> video_clip, List<Bbox> boxes, List<float> det_conf, List<int> cls_id)
{
if (video_clip.Count != this.len_clip)
{
Console.WriteLine("input frame number is not " + this.len_clip);
throw new Exception("input frame number is not " + this.len_clip);
}
int origin_h = video_clip[0].Rows;
int origin_w = video_clip[0].Cols;
this.preprocess(video_clip);
// 輸入Tensor
Tensor<float> input_tensor = new DenseTensor<float>(input_tensor_data.ToArray(), new[] { 1, 3, this.len_clip, this.inpHeight, this.inpWidth });
List<NamedOnnxValue> input_container = new List<NamedOnnxValue>
{
//將 input_tensor 放入一個輸入參數的容器,並指定名稱
NamedOnnxValue.CreateFromTensor("input", input_tensor)
};
var ort_outputs = onnx_session.Run(input_container).ToArray();
float[] conf_preds0 = ort_outputs[0].AsTensor<float>().ToArray();
float[] conf_preds1 = ort_outputs[1].AsTensor<float>().ToArray();
float[] conf_preds2 = ort_outputs[2].AsTensor<float>().ToArray();
float[] cls_preds0 = ort_outputs[3].AsTensor<float>().ToArray();
float[] cls_preds1 = ort_outputs[4].AsTensor<float>().ToArray();
float[] cls_preds2 = ort_outputs[5].AsTensor<float>().ToArray();
float[] reg_preds0 = ort_outputs[6].AsTensor<float>().ToArray();
float[] reg_preds1 = ort_outputs[7].AsTensor<float>().ToArray();
float[] reg_preds2 = ort_outputs[8].AsTensor<float>().ToArray();
this.generate_proposal_one_hot(this.strides[0], conf_preds0, cls_preds0, reg_preds0, boxes, det_conf, cls_id);
this.generate_proposal_one_hot(this.strides[1], conf_preds1, cls_preds1, reg_preds1, boxes, det_conf, cls_id);
this.generate_proposal_one_hot(this.strides[2], conf_preds2, cls_preds2, reg_preds2, boxes, det_conf, cls_id);
List<int> keep_inds = Common.multi class_nms_ class_aware(boxes, det_conf, cls_id,this.nms_thresh, 24);
int max_hw = Math.Max(this.inpHeight, this.inpWidth);
float ratio_h = (float)((float)origin_h / max_hw);
float ratio_w = (float)((float)origin_w / max_hw);
for (int i = 0; i < keep_inds.Count; i++)
{
int ind = keep_inds[i];
boxes[ind].xmin = (int)(boxes[ind].xmin * ratio_w);
boxes[ind].ymin = (int)(boxes[ind].ymin * ratio_h);
boxes[ind].xmax = (int)(boxes[ind].xmax * ratio_w);
boxes[ind].ymax = (int)(boxes[ind].ymax * ratio_h);
}
return keep_inds;
}
}
}











































參考

https://github.com/hpc203/YOWOv2-video-action-detect-onnxrun

訓練源碼

https://github.com/yjh0410/YOWOv2