當前位置: 妍妍網 > 碼農

SemanticKernel之LLama3案例

2024-05-09碼農

之前的篇章都是用SemanticKernel來連線OpenAI的API,當然是需要費用,另外還有使用限制,本篇來說明在SK中使用開源模型LLama3。

首先引入Nuget包,這裏使用的是LLamaSharp這個三方包,因為沒有顯卡,只能跑在CPU上,所以也需要引入對應的Cpu包,最後引入SK的LLama版的包。

<ItemGroup><PackageReferenceInclude="LLamaSharp"Version="0.11.2" /><PackageReferenceInclude="LLamaSharp.Backend.Cpu"Version="0.11.2" /><PackageReferenceInclude="LLamaSharp.semantic-kernel"Version="0.11.2" /></ItemGroup>

接下就是下載最新的LLama3了,副檔名是gguf,如下程式碼就可以輕松地跑起本地小模型了。

using LLama.Common;using LLama;using LLamaSharp.SemanticKernel.ChatCompletion;using System.Text;using ChatHistory = LLama.Common.ChatHistory;using AuthorRole = LLama.Common.AuthorRole;await SKRunAsync();async Task SKRunAsync(){var modelPath = @"C:\llama\llama-2-coder-7b.Q8_0.gguf";var parameters = new ModelParams(modelPath) { ContextSize = 1024, Seed = 1337, GpuLayerCount = 5, Encoding = Encoding.UTF8, };usingvar model = LLamaWeights.LoadFromFile(parameters);var ex = new StatelessExecutor(model, parameters);var chatGPT = new LLamaSharpChatCompletion(ex);var chatHistory = chatGPT.CreateNewChat(@"這是assistant和user之間的對話。assistant是一名.net和C#專家,能準確回答user提出的專業問題。"); Console.WriteLine("開始聊天:"); Console.WriteLine("------------------------");while (true) { Console.Write("user:");var userMessage = Console.ReadLine(); chatHistory.AddUserMessage(userMessage);var first = true;var content = "";awaitforeach (var reply in chatGPT.GetStreamingChatMessageContentsAsync(chatHistory)) {if (first) { first = false; Console.Write(reply.Role + ":"); } content += reply.Content; Console.Write(reply.Content); } chatHistory.AddAssistantMessage(content); }}

下面是具體的效果,除了慢點,沒有GPT強大點,其他都是很香的,關鍵是沒有key,輕松跑,不怕信用卡超支。